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The Development and Evaluation of a Benthic Index
of Biological Integrity for the Cedar River

Watershed, Washington

By Robert W. Black and Dorene E. MacCoy

ABSTRACT

As part of the City of Seattle’s Cedar River
Watershed Aquatic System Monitoring Plan, macro-
invertebrates were collected from 45 sites in 1995
and 39 sites 1996. The samples were primarily col-
lected from riffie and some pool sites within the
upper Cedar River Watershed in the Cascade Range
of Washington. The watershed is protected and sup-
plies municipal drinking water to the City of Seattle.
While a large portion of the watershed is undis-
turbed, some logging has occurred. The macroinver-
tebrate data collected were used to identify a series
of biologically meaningful community attributes or
metrics. Metrics were combined into a multimetric
index and scored, forming a benthic index of biolog-
ical integrity (BIBI). Each successfully developed
BIBI multimetric list and score was used to evaluate
the current biological integrity of selected sites with
varying degrees of land management influence
within the watershed. The BIBI’s developed for
these sites also provide a framework in which to
evaluate future similar sites. For small, low order
streams in the watershed, a series of metrics was
combined into two statistically significant BIBI’s
capable of differentiating sites. The BIBI created for
low-elevation and high-elevation, small stream sites
were each composed of a unique set of metrics.
Although the BIBI’s were capable of differentiating
sites, many of the BIBI site scores were highly vari-
able between sampling years. The variation in some
BIBI scores was large enough to result in a shift in
the biological integrity assessment of some sites in
spite of no known change in land management activ-
ity within the watershed between years. Under ideal
circumstances, a BIBI will produce scores that are
relatively insensitive to annual variability resulting

from natural factors. For low-elevation, large stream
sites a statistically significant BIBI capable of differ-
entiating between sites could not be derived. The
results presented suggest that BIBI's developed in
watersheds with a narrow range of disturbance, such
as the Cedar River Watershed, may be subject to
annual shifts in BIBI scores. The future use of the
BIBI presented in this study for the assessment of
biological integrity should be done with great care
and with other Cedar River Watershed aquatic sys-
tem information.

INTRODUCTION

Background

The Cedar River Watershed is located in the
western Cascade Range of King County, Washington
(fig. 1), and is the primary water supply for the Seattle
metropolitan area. In August of 1995, the City of
Seattle began a water-quality monitoring project for the
watershed which was approved by the Washington
State Department of Ecology (Seattle Water, 1995).
The purpose of the monitoring project was to imple-
ment a program to monitor the chemical, physical, and
biological attributes of the Cedar River Watershed.
This was done to help evaluate the condition of the
aquatic system; identify human impact or land manage-
ment influences (LMI’s) on the aquatic system from
activities such as timber harvesting, road construction,
and road maintenance; and prioritize watershed resto-
ration projects. The monitoring plan contained three
sections: hydrologic monitoring, water quality moni-
toring, and biological monitoring.












This report addresses part of the biological monitoring
section of the plan and reflects the effort of the U.S.
Geological Survey (USGS) in cooperation with the
City of Seattle to develop a benthic index of biological
integrity (BIBI).

Objectives

There are three objectives in the biological mon-
itoring section of the watershed monitoring plan.
These objectives are to establish a data base of current
benthic communities within the watershed, analyze the
influence of past and current land management activi-
ties on benthic communities by the development of an
index of biological integrity, and provide a framework
for a macroinvertebrate data collection program for
monitoring land management practices. Under the
guidance of the Cedar River Watershed Aquatic
System Monitoring Plan (Seattle Water, 1995), the City
of Seattle began water quality monitoring and collected
2 years of physical habitat data and benthic macroin-
vertebrate samples from select sites throughout the
watershed. The USGS analyzed the benthic macroin-
vertebrate samples and developed the BIBI.

Biological Index History

In the last decade, water resources management,
monitoring, and protection efforts have experienced a
major shift in philosophy. Earlier efforts to regulate
aquatic systems by measuring their chemical and phys-
ical properties resulted in an incomplete assessment of
the health of biological communities due to the tempo-
ral nature of the sampling. One way to evaluate the
health of aquatic biological communities is through a
multi-index (multimetric) analysis. This type of analy-
sis involves defining an array of indices, or metrics, that
individually provide information on diverse biological
attributes and, when integrated, give an overall indica-
tion of the condition of the biological community
(Barbour and others 1995; Norris 1995). These metrics
may include community richness measures (such as
total taxa), composition measures (such as percentage
of mayfly species), tolerance measures (such as percent
of sediment tolerant species), and trophic measures
(such as percent filter feeding species). These metrics
and others have been correlated with human impact
(Karr, 1991 and 1993). One of the most well-known
and frequently applied uses of the multimetric

approach is known as the index of biological integrity
(IBI). Karr and others (Karr 1981; Karr and others
1986) developed the IBI approach in response to a
growing belief that water chemistry and toxicity testing
do not adequately measure ecological health or biolog-
ical integrity. IBI’s were originally used to address the
Clean Water Act’s mandate to restore and maintain the
biological integrity of the nation’s waters, and have
been used in studies across the country to evaluate
human impact on stream communities. The original
IBI’s were calculated using warm water freshwater fish
communities in the Midwest United States. However,
in the Pacific Northwest, it has been more difficult to
develop IBI’s in cold water streams because they con-
tain fewer fish species. Therefore, IBI work in the
Pacific Northwest has, in some cases, focused on
benthic macroinvertebrates. The use of macroinverte-
brate communities to assess the biological integrity or
health of streams has been successfully applied in the
Pacific Northwest (Kleindl, 1995; Fore and others,
1996). The IBI approach that uses benthic macroinver-
tebrates as its community indicator is known as the
benthic index of biological integrity (BIBI). The fol-
lowing report presents the results of a BIBI evaluation
of the Cedar River Watershed.

The Cedar River Watershed is protected and con-
sidered to be pristine, compared with many watersheds
within the Puget Sound region. However, there has
been some influence through historic timber harvest
and road construction. An IBI for a minimally
impacted watershed has not been developed in the
Pacific Northwest. Some metrics that work in more
extensively impacted areas may not work in the Cedar
River Watershed.

Purpose and Scope

The purpose of this report is to present the mac-
roinvertebrate taxonomic data for each sample col-
lected by the City of Seattle and to statistically evaluate
metrics as they relate to three LMI’s: percentage of site
watershed logged within the last 40 years; road density,
in miles of road per square miles of the site watershed;
and percentage of stream miles in a site watershed
within 100 meters of a road. The scope of the sample
analysis was limited to 2 years of samples (1995 and
1996) collected from 47 sites within the Cedar River
managed watershed.



Description of Study Area

The 90,495 acres of the protected Cedar River
Watershed provides 63 percent of the drinking water
for 1.3 million people in the Seattle metropolitan area.
The watershed is located in the central Cascade
Mountains and contains two ecoregions; the low-eleva-
tion (less than 3,000 feet) and the high-elevation
(greater than 3,000 feet) Western Cascade Mountains.
Elevations within the watershed range from 538 feet to
5,449 feet above sea level. The Cedar River main stem
flows in a generally northwest direction for approxi-
mately 51 miles before entering Lake Washington,
which flows into Puget Sound.

The Chester Morse Lake Reservoir and the
Masonry Pool, the largest lakes within the watershed,
are capable of storing approximately 70,000 acre-feet
of water. Originally built for hydroelectric power gen-
eration, the Masonry Dam presently controls the water
level of the lake. Out of its 70,000 acre-feet of storage
capacity, only 30,000 acre-feet are actually available
for downstream flow (Seattle Water, 1995). This regu-
lated flow does affect downstream macroinvertebrate
populations and land management influence in the
lower watershed. The land management influence cal-
culated for the Cedar River main stem sites, down-
stream of the reservoir, considered only the watershed
area below the dam.

The Cedar River Watershed is 94 percent for-
ested, with only 29 percent of the watershed harvested
in the last 40 years, a road density of 4 miles per miles
squared, and approximately 40 percent of all stream
miles within 100 meters of a road.

The watershed topography ranges from flat
Puget Sound lowlands to steep, high mountainous ter-
rain. The watershed is underlain with a series of volca-
nic and volcaniclastic rocks (Frizzel and others, 1984).
Alpine deposits consisting mostly of basal till dominate
the surficial geology in the eastern portion of the water-
shed and outwash in the lower river valleys, and the
western portion of the watershed is dominated by gla-
cial outwash. The volcaniclastic areas are highly
weathered and are landslide hazard areas (Foster
Wheeler Environmental Corporation, 1995). The over-
all watershed landslide density is 0.350 slides per
160 acres, which is much lower than in the land sur-
rounding the watershed.

The western Washington climate is marine with
mild, wet falls and winters and drier summers with
average annual precipitation from 70 inches in the low-

lands to over 120 inches in the higher elevations. Pre-
cipitation generally falls as snow in places above
3,000 feet, with rain-on-snow events regularly occur-
ring that are the major cause of flooding in the water-
shed (Seattle Public Utilities, 1998).

The magnitude and duration of flows in the
watershed control the stream channel shape and config-
uration. The volume and timing of these flows deter-
mine the type and amount of habitat available to fish
and aquatic macroinvertebrates. Activities such as tim-
ber harvesting or road construction can alter infiltration
rates and increase flood flows. This in turn may
increase streambed and bank scour, cause degradation
of aquatic habitats (Seattle Public Utilities, 1998), and
alter the aquatic communities. For example, an
increase in solar energy reaching a stream as a result of
logging in the riparian zone could increase stream tem-
peratures and algae production. This could cause a
shift in the macroinvertebrate communities from pred-
ator or shredder dominated to grazer dominated (Allan,
1995). An increase in temperature could also directly
alter species composition from more temperature sen-
sitive to temperature-insensitive species. Therefore,
monitoring the macroinvertebrate community compo-
sition is important to evaluate the effect of land man-
agement activities on aquatic communities in the
watershed.

During the fall and winter of 1995 and winter of
1996 there were major floods in the watershed. The
first was a rainfall storm event in October of 1995 that
occurred at the time of the 1995 macroinvertebrate
sampling and resulted in a 2- to 5-year storm event.
The second major storm event occurred at the end of
November 1995 and was a rain-on-snow event that
affected mainly the eastern portion of the watershed.
The largest storm of the winter was also a rain-on-snow
event at the end of January and the beginning of
February 1996 and affected mainly the western portion
of the watershed. The flow in Taylor Creek subwater-
shed from the February storm was the largest flow for
the period of record (41 years). The difference in flow
between 1995 and 1996 in the smaller tributaries
ranged from no difference at Green Point Creek to
48 cubic feet per second (ft3/s) at Taylor Creek. The
difference in flow between years in the larger rivers
ranged from 70 ft3/s for the Cedar River at Bear Creek
to 340 ft3/s for the Cedar River near Landsburg (Seattle
Public Utilities, 1998). These flow changed between
years may have had an influence on macroinvertebrate
communities but will not be addressed in this report.









A modified Surber sampler (415 microns) was used to
collect the samples. The stream bottom was thor-
oughly disturbed within the area delineated by the
Surber by scrubbing every removable rock and stirring
up the stream bottom.

Pool samples were also collected from three sites
for quantitative comparisons with riffle samples col-
lected at the same sites. The pool samples were not
used in the development of the BIBL

The macroinvertebrate field samples were pre-
served in 85 percent ethanol with 10 percent formalin
and stored in plastic bags. Each sample was labeled
with the name of the stream sampled, site name, date
and time of collection, and collector’s name. Proper
preservation of the samples was critical to the success
of the project by preventing loss of organisms through
deterioration. There was some evaporative loss of pres-
ervation material from the plastic bags, which caused
sample deterioration and some labels to deteriorate. In
the future, tightly sealed jars would be preferable for
sample storage.

The samples were sorted and completely exam-
ined for macroinvertebrates by the City of Seattle. The
quality assurance for the sorting procedure consisted of
resorting 10 percent of all samples. To do this, a sam-
ple was spread evenly in a sorting tray, and 10 random
scoops were taken and examined under a dissecting
microscope. If no more than 10 macroinvertebrates
were recovered, the quality assurance was considered
complete. If more than 10 macroinvertebrates were
recovered, then the process was continued with another
10 random scoops of the remaining sample. This pro-
cess continued until the entire sample was reprocessed.

In order to perform a meaningful and accurate
assessment of the aquatic ecosystem using BIBI, an
accurate identification and enumeration of the benthic
macroinvertebrates samples was completed and taxa
were identified by EcoAnalysts, Inc., Moscow, Idaho to
the lowest level possible. Quality assurance of identi-
fication was done by reidentifying 10 percent of the
samples. This involved placing the entire sample back
into the vial and reidentifying and recounting the indi-
viduals. The reidentification was considered success-
ful when the recount was within 10 percent of the
original. Also, taxonomic accuracy was evaluated by
the USGS Biological Investigation Laboratory in
Arvada, Colo. A voucher collection was assembled by
EcoAnalysts, Inc. containing specimens of each taxon,
sent to the U.S. Geological Survey lab, and verified by
an aquatic entomologist. Macroinvertebrate data can be
found in Appendixes A and B.

During the sampling period of 1995 and
1996, over 61,000 individual macroinvertebrates were
sorted and identified. Five predominant aquatic taxo-
nomic orders were discovered in the samples: Diptera
(38 percent), Ephempotera (28 percent), Trichoptera
(20 percent), Plecoptera (10 percent) and Coleoptera
(4 percent). These taxonomic orders were composed of
167 and 169 unique taxa in the 1995 and 1996 sam-
plings, respectively. A total of 199 unique taxa were
identified for both sampling years. The voucher collec-
tion used to evaluate the taxonomic accuracy of the
macroinvertebrate identification laboratory showed
that eight taxa were misidentified at the genus-species
level. An identification error of less than 5 percent
based on the total number of taxa identified and a
1-percent error based on the total number of individuals
identified was viewed as acceptable.

Metric Data Analysis

A benthic index of biological integrity (BIBI)
approach was utilized to assess the overall ecological
health of the Cedar River system as part of the Cedar
River Watershed Aquatic System Monitoring Plan.
The BIBI helps to identify influences on aquatic com-
munities from timber harvest and road construction,
and to identify areas in the watershed in need of resto-
ration. The BIBI approach extracts relevant commu-
nity patterns from aquatic macroinvertebrate taxa lists
and quantitatively relates those patterns to land man-
agement influences (LMI’s) within a watershed. The
community patterns or attributes are sometimes called
metrics and this approach is often referred to as a mul-
timetric approach (Karr and others, 1986; Barbour and
others, 1995; Fore and others, 1996).

Prior to developing a BIBI for the Cedar River
Watershed, sampling sites representing different levels
of LMI had to be established, as discussed above. Fol-
lowing site selection, a BIBI framework was developed
using methods outlined in the Cedar River Watershed
Aquatic System Monitoring Plan (Seattle Water, 1995)
and in a Puget Sound lowland study (Kleindl, 1995).
The framework consists of selecting biologically
meaningful metrics, selecting the best metrics, devel-
oping a range of metric scores, testing the BIBI scores
across a range of LMI, and the application of the BIBI
in the Cedar River Watershed.



Table 1. Stream names, river mile, degree of influence and land management influence criteria for invertebrate samples taken
from the Cedar River Watershed in 1995 and 1996 as part of the Cedar River Watershed Aquatic System Monitoring Plan

[*, estimated value; mi/sq/mi, miles per square miles]

Land management influence

Total Total
percentage percentage
Degree of stream of stream
ofland  Percentage Road Road miles within miles within
manage- of basin density density 100 meters 100 meters
River Mapsite ment harvested  (mi/sq/mi) (mi/sq/mi) of road, of road,
Stream name mile  number influence in 40 years 1995 1996 1995 1996

Sites at elevation less than 3,000 feet above sea level and stream order 1 to 3

Hotel Creek 0.2 7 Low 4 3.79 3.79 37 37
Rock Creek! 0.0 11 Low 4 2.39 2.39 26 26
Rock Creek!:2 3.7 12 Low 4 231 2.31 19 19
Rock Creek 4.6 13 Low 6 2.05 2.05 20 20
Goat Creek 0.1 5 Medium 39 3.64 3.64 30 30
Roaring Creek 0.2 10 Medium 41 3.84 3.84 14 14
Williams Creek? 0.2 20 Medium 0 3.68 3.68 37 37
Williams Creek4 1.0 21 Medium 1 3.67 3.67 36 36
Green Point Creek? 0.0 6 High 31 6.96 6.96 64 64
Lost Creek 04 8 High 99 9.44 9.44 73 73
McClellan Creek? 0.0 9 High 30 5.84 5.84 57 57
Middle Fork Taylor Creek 3.0 16 High 57 3.92 3.92 40 40
Seattle Creek 1.8 15 High 65 4.61 4.61 46 46
Webster Creek 2.1 18 Test 4 4.57 4.57 34 34
Webster Creek 2.8 19 Test *4 4.50 4.50 29 29

Sites at elevation less than 3,000 feet above sea level and stream order 4 to 6

Lower Cedar River 1.0 22 Medium 12 4.64 4.64 42 42
Lower Cedar River 5.2 23 Medium 15 4.70 4.70 42 42
Lower Cedar River 6.9 24 Medium 15 4.63 4.63 42 42
Lower Cedar River 8.8 25 Medium 14 5.27 5.27 45 45
North Fork Cedar River 0.7 29 Medium 29 2.61 2.61 29 29
North Fork Taylor Creek 1.3 17 Medium 8 6.38 6.38 49 49
Taylor Creek? 0.0 32 Medium 19 4.35 4.35 40 40
Taylor Creek 0.9 33 Medium 21 4.37 4.37 41 41
Boulder Creek? 0.5 2 High 64 3.67 3.42 29 26
Boulder Creek 1.1 3 High 66 3.43 3.43 25 25
Middle Fork Taylor Creek 1.0 28 High 38 4.52 4.52 41 41
Rack Creek!-2 0.0 31 High 58 5.36 5.36 42 42
Rex River 0.8 42 High 51 4.25 4.25 35 35
Rex River 2.2 43 High 44 4.12 4.12 34 34

Rex River 42 44 High 49 4.10 4.10 37 37



Table 1. Stream names, river mile, degree of influence and land management influence criteria for invertebrate
samples taken from the Cedar River Watershed in 1995 and 1996 as part of the Cedar River Watershed Aquatic

System Monitoring Plan—Continued

Land management influence

Total Total
percentage percentage
Degree of stream of stream
of land Percentage Road Road miles within miles within
manage- of basin density density 100 meters 100 meters
River Mapsite ment harvested  (mi/sq/mi) (mi/sq/mi) of road, of road,
Stream name mile  number influence in40 years 1995 1996 1995 1996
Sites at elevation less than 3,000 feet above sea level and stream order 4 to 6—Continued
Rex River 5.7 45 High 67 523 5.23 49 49
Lower Cedar River 11.5 26 Test 39 6.32 6.32 53 53
Lower Cedar River 12.1 27 Test 44 5.84 5.84 48 48
North Fork Cedar River 2.4 30 Test 37 3.11 3.11 34 34
Taylor Creek 2.3 34 Test 22 4.46 4.46 41 41
Taylor Creek 2.5 35 Test 22 4.45 4.45 41 41
Upper Cedar River 0.0 36 Test 34 3.61 3.55 34 34
Upper Cedar River 5.0 37 Test 38 3.64 3.59 35 35
Upper Cedar River? 6.9 38 Test 39 3.68 3.68 36 36
Sites at elevation greater than 3,000 feet above sea level and stream order 1 to 3
Bear Creek 1.6 1 Low 3 0.16 0.16 0 0
Spring Creek 0.6 40 Low 4 0.22 0.22 0 0
Pine Creek? 0.7 47 Medium 40 0.95 0.95 8 8
Pine Creek 0.8 41 Medium 42 1.09 1.09 9 9
Boulder Creek 32 4 High 96 7.80 7.80 55 55
Boulder Creek3 3.1 46 High 75 1.01 1.01 3 3
South Fork Cedar River 3.0 48 Test 82 6.15 6.15 60 60
Tinkham Creek 03 39 Test 17 1.31 1.31 18 18
1Pool samples also collected at these sites.
2Samples only collected in 1995.
3Samples only collected in 1996.
Biologically Meaningful Metrics ways (table 2). These metrics can be grouped in four

It was important to choose biologically meaning-
ful macroinvertebrate metrics that are correlated with

general classes: absolute abundance or richness (such
as Ephemeroptera taxa), relative abundance or richness
(such as percent dominance using the three most abun-

LMTI’s. A number of agencies and studies have pro- dant species), tolerance measures (such as percent sed-
posed and utilized numerous metrics thought to iment tolerant species), and trophic measures (such as
respond to land management activities in predictable percent predators).
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Table 2. Macroinvertebrate metrics used by other studies

[Ecology, Washington State Department of Ecology; DEQ RBP, Oregon Department of Environmental Quality rapid bioassessment
protocols; BIBI, benthic index of biological integrity; spp, species]

Puget Oregon Rapid
Sound DEQ Oregon Aquatic Ohio Bioassess-
Lowland RBP BIBI Biology Tennessee Biological ment
Metric Ecology studies! studies studies! Associates Valley! Criteria  Protocol
Absolute abundance / richness measures
Total taxa X X X X X X X X
Abundance -- -- -- X X -- - -
Relative abundance X - -- - - - - -
EPT taxa X - X - X - X X
Ephemeroptera taxa -- X - X -- X X -
Ephemerellidae taxa -- -- -- - X - - -
Ephemerellidae and
Heptageniidae taxa X - -- - X - - --
Plecoptera taxa -- X - X - X X -
Trichoptera taxa - X . X -- X X —
Rhyacophilidae taxa
(predaceous caddis) X - - - X - - -
Dipteran taxa -- - -- -- X - X -
Relative abundance / richness measures
EPT taxa, percentage - - X - - - - -
Ephemeroptera taxa, percentage - -- - -- - - X -
Trichoptera, percentage - - - - - - X -
Simuliidae, percentage - - - - X - - -
Percentage of dominance (3 spp) - - - X - - - -
Percentage of dominance (1 spp) X -- X -- X - - -
Oligochaetes, percentage -- -- - -- X - .- -
Leeches -- - - - X - - -
Chironomids, percentage - - X - X - - -
Cricotopus Nostococladius.
percentage - - - - X - - -
Tanytarsini midges, percentage - - - - -- - X -
Other Diptera and non-insects,
percentage - - - - - - X -
Planariidae and Amphipoda
abundance, percentage -- X - - - - - -
Voltinism (number of life cycles) X - - -- - - - -



Table 2. Macroinvertebrate metrics used by other studies—Continued

Puget Oregon Rapid

Sound DEQ Oregon Aquatic Ohio Bioassess-

Lowland RBP BIBI Biology Tennessee Biological ment
Metric Ecology studies! studies studies! Associates Valley! Criteria Protocol

Tolerance measures

Intolerant taxa - X - X - - - —
Intolerant EPT, percentage X -- - - - - - -
Tolerant taxa, percentage - X - X - - X -
Intolerant Ephemeroptera,

percentage - - - -
Intolerant Ephemeroptera -- -- - --
Tolerant Ephemeroptera - -- - -

Moo X

Intolerant Plecoptera, percentage -- - - -
Nemouridae taxa (shredder

stonefly) -- -- - - X - - -
Long-lived taxa - X - -
Pteronarcys taxa (long-lived

stonefly) - - - X

>

Tolerant Trichoptera, percentage - -- - -
Intolerant Trichoptera, percentage  -- - - -
Tolerant beetles, percentage -- - - -

Pk o) X

Tolerant beetle taxa -- -- - -
Hydropsychidae (tolerant caddis),

percentage X -- - -- - -- - -
Glossosomatidae (intolerant

scraper caddis), percentage X - - - X - - -
Philopotamidae (sediment sensitive

caddis), percentage -- -- -- - X - - -
Arctopsychidae (long-lived

caddis), percentage - -- -- - X - - -
Psychomyiidae (sediment sensitive

caddis), percentage -- - - - X - - -
Sediment intolerant taxa - - -- X - - - -
Sediment tolerant, percentage -- - -- X - - - -
Tolerant Dipterans, percentage -- -- - -
Tolerant molluses, percentage -- -- - -

Tolerant odonates, percentage - -- -- -
Hilsenhoff biotic index X -- X -
Diversity index, H’ - - X - - - - —
Community loss index - - -- - - - - X
Family biotic index (modified) -- - - - - - - X
Ratio EPT/Chironomid abundances -- -- - - - - - X
Contribution dominant family,

X
X
Tolerant crustacea, percentage - - - - X - - -
X
X

percentage -- -- - -- -- - -- X
Biotic Condition Index X - -- - - - - -



Table 2. Macroinvertebrate metrics used by other studies—Continued

Puget Oregon Rapid

Sound DEQ Oregon Aquatic Ohio Bioassess-

Lowland RBP BIBI Biology Tennessee  Biological ment
Metric Ecology studies! studies studies! Associates Valley! Criteria  Protocol

Trophic measures
Plecoptera and Trichoptera
shredders X -- -- - -- - - -

Shredder taxa -- - - - X - - -
Shredder, percentage X -- X - - - -- -
Scraper taxa -- -- - -- X - - -
Scraper, percentage X -- X X X - - -
Xylophage taxa (wood eater) -- -- - - X -- - --
Predator - -- - - X - - -
Predator, percentage X X - -- -- X - --
Gatherer, percentage X -- - - X - - -
Parasite, percentage - - - -- X - - -
Filterers, percentage X - X - - - - -
Ratio of schredders / total - - - -- - - - X
Ratio of scrapers / filter collectors - - - - - - - X

lProposed metrics to be used in the Cedar River Wtershed benthic index biological index (BIBI).

Previously established hypotheses about how
each metric responded to disturbance were used to
evaluate them for use in this study (Cummins and oth-
ers, 1989; Karr and Kerans, 1991; Karr and Chu, 1997).
For example, it was hypothesized that the total taxa
would decline as the extent of LMI increased. Con-
versely, it was hypothesized that the proportion of tol-
erant macroinvertebrates would increase with
increased LMI’s. Many different metrics have been
used in previous studies; of these, 15 were selected for
this study based on previous work done in the Pacific
Northwest (Kleindl, 1995; Fore and others, 1996; Karr
and Chu, 1997). The 15 metrics and, their hypothesized
responses to LMI’s are presented in table 3.
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Table 3. Attributes of aquatic invertebrate community
assemblages (metrics) and predicted responses to human

disturbance
Metric Predicted response

Total taxa Decrease
Ephemeroptera taxa Decrease
Plecoptera taxa Decrease
Trichoptera taxa Decrease
Intolerant taxa Decrease
Long lived taxa Decrease
Pteronarcys sp. Decrease
Clinger taxa Decrease
Sediment intolerant taxa Decrease
Total abundance Decrease
Dominance of 3 taxa, percentage Increase
Tolerant species, percentage Increase
Sediment tolerant species, percentage Increase
Scrapers, percentage Decrease
Predators, percentage Decrease




Macroinvertebrate taxa tolerance and sediment
tolerance were based on information found in
Wisseman (1996) and Kleindl (1995), respectively. For
tolerance measures, the most and least tolerant taxa
were identified rather than assigning a tolerance rank-
ing to each taxa. The number of clinger taxa, percent
scrapers, and percent predators were all identified
based on Merritt and Cummins (1984). The species
that are included in these metrics are given in appen-
dixes A and B.

The tolerant and intolerant taxa are defined
mainly by the quality of habitat in which they are found
and are subject to the experience of entomologists
working with particular macroinvertebrate communi-
ties. For example, percent intolerant species would be
cold-water adapted and intolerant of fine sediment,
would require high oxygen levels, and would be sensi-
tive to high winter scour and resorting of substrates
(Wisseman, 1996). Tolerant species exhibit high toler-
ance to warmer water, fine sediment, and/or nutrient
enriched situations (Wisseman, 1996).

An additional metric used in this study included
long-lived taxa. Long-lived taxa are macroinverte-
brates that live two or more years to complete their life
cycle (Kleindl, 1995).

In some samples it was difficult to identify mac-
roinvertebrate taxa to the lowest taxonomic level, and
adjustments were made to the data set used to calculate
metrics for each replicate sample at a site. For exam-
ple, terrestrial insects and Hymenoptera were removed
from the data set because they were either not aquatic
or were considered to be lake organisms. Prior to cal-
culating richness values, the data set was modified to
avoid duplicating taxon counts. Taxa that could not be
identified to the lowest level possible were considered
to be an immature or unidentifiable form of another
species within that family or genera. For example, if
two individuals at a site were identified as Ironedes sp.
(a genus of mayfly) and lronedes grandis (a species of
mayfly), Ironedes sp. would be considered an immature
or unidentifiable form of Ironedes grandis. In this case,
the fronedes sp. taxon count would be zero for this site.
Table 4 provides other examples of how the data set
was modified prior to the calculation of the 15 chosen
metrics. Once the data set was modified, 15 unique
metric values were calculated for each of the 3 repli-
cates, collected at each site in 1995 and 1996. Exam-
ples of all metric values for all samples can be found in
Appendixes C and D.

Table 4. Alteration of raw data for richness metric calculations

[The data manipulation was done on the data prior to the calculation of richness metrics that include total taxa, Ephemeroptera
taxa, Plecoptera taxa, Trichoptera taxa, intolerant taxa, sediment intolerant taxa, long-lived taxa, and Pteronarcys taxa; sp, species]

Order Family Taxon Site 1 Site 2
Ephemeroptera - - 1100...0 124..0
Ephemeroptera Heptageniidae - 4.0 1.0
Ephemeroptera Heptageniidae Tronodes sp. 0 13..0
Ephemeroptera Heptageniidae Ironopsis grandis 4 5
Ephemeroptera Heptageniidae Rhithrogena sp. 27 9
Ephemeroptera Leptophlebiidae -- 13..0 2
Ephemeroptera Leptophlebiidae Paraleptophlebia sp. 2 0

-- -- Total taxa ) 3 3

-- -- Total abundance 145 54

ITaxa were changed to (...) zero.

Best Metrics

After compiling the macroinvertebrate data and
identifying meaningful metrics, the next step is identi-
fication of the best metrics for inclusion in the BIBI.
The best metrics are those that respond predictably to
land management influences (LMI’s), vary enough

across sites to distinguish between the low LMI and
high LMI sites, are similar across the area of interest
and influence conditions, are not correlated with other
metrics, and exhibit consistent patterns over time.

To evaluate these factors and identify the best
metrics, a graphical interpretation method similar to
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that used by Fore and others (1996). The average of
each metric value calculated by site was plotted against
each of the three LMI factors used to assign high,
medium, and low influence sites. Prior to calculating
average metric scores for each site, replicate samples
with less than 100 individuals were not included in the
BIBI calculations. It has been shown that samples with
limited numbers of individuals can produce variable
BIBI results (Fore and others, 1994), and suggested
that samples with less than 100 individuals may be
inappropriate for use in a BIBI analysis (Karr and Chu,
1997). Plots were created for the low elevation-small
and large streams for 1995 and 1996, and the high ele-
vation-small streams for 1996. This resulted in the cre-
ation of 225 metric evaluation graphs (Appendixes E
and F). Each graph was examined to determine if the
metrics followed the hypothesized trend presented in

table 3. For example, if a metric was predicted to
decline with increasing LMI, a negative relationship
was expected. To help assess the statistical relationship
between metrics and types of disturbance, a Spear-
man’s rank correlation coefficient (Sokal and Rohlf,
1981) was calculated. The correlation coefficients
were used to help establish trends rather than reject or
accept specific metrics for inclusion in the BIBL. Met-
rics with little or no overlap between high LMI and low
LMI sites and arrayed medium LMI sites between the
extremes (figure 3) in 1995 data were selected and
compared with data from 1996. Only those metrics
that responded to a gradient of influence and clearly
separated the high LMI and low LMI sites for both
1995 and 1996 were selected for inclusion in the BIBI
analysis.
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Figure 3. Trend in average metric values as land management influence increases. Note the
separation in fow and high influence site metrics highfighted by the bars on the right side of the figure.
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Range of Index Scores

A range of index scores for each chosen metric
was developed in three classes: 1 for high LMI sites, 3
for medium LMI sites, and 5 for low LMI sites. To
establish ranges of scoring criteria, a cumulative distri-
bution function (CDF) was plotted for each of the cho-
sen metrics. An example of CDF graphs can be seen on
figure 4. A CDF distribution tells what percent of the
total observations in the data collection are of a partic-
ular value or lower (Kachigan, 1986).

The data used in the CDF plots included the
mean metric values from the replicate samples with
more than 100 invertebrates by site calculated for 1995
and 1996 data. CDF plots were created for each best
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metric chosen at the low elevation-small stream and the
high elevation-small stream sites. As noted by Fore
and others (1996), general rules for setting metric scor-
ing criteria are difficult to define. If natural breaks
occurred in the CDF, metric scores were assigned to
reflect these breaks. For example, on figure 4a the CDF
from hypothetical metric values show two distinct
breaks. Based on these breaks, a metric score of 1
would be assigned to all those sites with metric values
less than 8, a score of 3 to sites between 8 and 18, and
a score of 5 to sites greater than 18. If the CDF plots
did not exhibit any natural breaks, as seen on figure 4b,
the distribution was divided at the 33rd and 67th per-
centiles.
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Figure 4. Example of the calculation of metric scores based on graphing cumulative density function using
hypothetical metric values. Graph (a) shows the metric scoring divisions based on natural breaks in the
cumulative density function. Graph (b) shows the scoring divisions at the 33rd and 67th percentiles.
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For the Cedar River Watershed, it was suspected
that there would be very little variability between sites
within each of the three physical site categories. There-
fore, the medium LMI category (score = 3) was broad-
ened to include more sites, thus making it more difficult
for a site to score a 1 ora 5 (Fore and others, 1996). For
the high-elevation sites, there were only four sites used
in the CDF plots, and in some cases only a score of 1 or
5 was generated. The sum of all metric scores was used
to produce a single BIBI score for each sample col-
lected.

Testing the Benthic Index of Biological Integrity
(BIBI) Scores

One of the main objectives of this study was to
develop a BIBI that could discriminate between sites
that have experienced different levels of LMI. The
Cedar River Watershed has restricted access to protect
the drinking water for the City of Seattle, so human
influence has been relatively minor. However, as noted
above, logging has occurred within the watershed. His-
toric logging activities (such as timber harvest and road
construction) were used to assign each sampling site to
a high, medium, or low LMI category (table 1). The
BIBI scores developed for each sample collected at
each site were used to statistically evaluate the biolog-
ical integrity of sites within each physical site category.

For low-elevation stream sites, two hypotheses
were proposed. The first was the hypothesis that there
was no difference in the mean BIBI scores between
low, medium, and high LMI sites for low elevation-
small streams. The second was the hypothesis that
there was no difference in the mean BIBI scores
between medium and high LMI sites for low elevation-
large stream sites. While the low-elevation, smail
stream sites had three LMI categories (high, medium,
and low), the low-elevation, large stream sites had only
two LMI categories (high and medium). The low-ele-
vation, large stream sites drain larger watersheds and
receive a higher degree of LMI. Therefore, there were
no low LMI sites sampled in the large streams. To test
these hypotheses a nested analysis of variance
(ANOVA) and post-hoc multiple comparison design
were proposed (Sokal and Rohlf, 1981). Given the
100-individuals-per-replicate requirement for a sample
to be included in the BIBI, a number of samples were
excluded from the analysis, and the proposed nested
ANOVA could not be completed. This necessitated

using an ANOVA rather than a nested ANOVA design.
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For the high-elevation, small stream sites, two
hypotheses were proposed for testing using two-sam-
ple t-tests (Sokal and Rohlf, 1981). The first hypothe-
sis proposed was that there was no difference between
the difference in mean BIBI scores for two sites in the
Pine Creek Basin that have been subjected to different
logging practices. The one major difference between
these sites is that the forest stand adjacent to site PIN
0.8 has been clear-cut within the last 30 years, whereas
the forest adjacent to site PIN 0.7 is considered old
growth. Unfortunately, these sites did not have an ade-
quate number of invertebrates to test this hypothesis.
Another hypothesis tested for the high-elevation, small
stream sites was that there was no difference in the
mean BIBI scores for high LMI sites compared to the
low LMI sites.

A statistical comparison between metric values
calculated for pools and riffles was done to evaluate if
collecting macroinvertebrates only from riffles would
produce an effective BIBI. Previous studies have used
invertebrate samples collected from pools to create a
BIBI (Kerans and Karr, 1994). Fifteen metric values
were calculated for pool and riffle samples collected
from select sites (Appendixes C and D). The hypothe-
sis that pool metric values are the same as riffle
metric values was analyzed using a non-parametric
Wilcoxon’s signed-ranks test (Sokal and Rohlf, 1981).

Lastly, the hypothesis that there is no significant
difference between metric values for high-elevation,
small streams and low elevation-small stream was
tested using a non-parametric Mann-Whitney test
(Sokal and Rohlf, 1981). This was done to evaluate the
influence of elevation on individual metric scores.

Application of the Benthic Index of Biological
Integrity (BIBI)

The final item in the BIBI framework is the utili-
zation of the BIBI relationships to assess the biological
integrity of the Cedar River Watershed and help deter-
mine management actions within the watershed.
Further assessments are needed to detect trends in man-
agement actions. The BIBI results presented in this
study should be incorporated with the results from the
other components of the Monitoring Plan (Seattle
Water, 1995) and evaluated as a whole.



Habitat Data Analysis

In addition to the collection of macroinvertebrate
samples, several habitat parameters were also mea-
sured at the BIBI sites. One of these was percent can-
opy cover calculated with a spherical densiometer
(Appendix G). Several qualitative assessments were
taken that included percent fine material, percent in-
stream cover, percent embeddedness, percent woody
debris, channel shape, pool-riffie ratio, width-depth
ratio, percent bank vegetation, and bank stability
(Appendix H). Width and depth were measured at a
number of locations throughout the reaches in which
macroinvertebrate were collected (Appendix I). This
data was used to calculate the width-depth ratio for the
statistical analysis described below. Riparian vegeta-
tion measurements were taken at each site, such as per-
cent big trees at a site (Appendix J). Substrate
conditions at each site were also recorded (Appendix
K). A more detailed discussion of the methods used to
collect the habitat variable data can be found in Seattle
Water’s (1995) Cedar River Watershed Aquatic System
Monitoring plan.

Detailed habitat measures are not required to
develop an effective BIBI. However, some preliminary
statistical correlations between some of the habitat
measures and final BIBI scores for some sites were
evaluated and may help to interpret these scores. A
backwards stepwise regression procedure (Kachigan,
1986) was used to determine if there was a relationship
between some of the habitat variables and the BIBI
scores. This procedure requires all variables to be
added to the regression analysis. The least useful pre-
dictor habitat variable is removed, and the regression
model reevaluated. This procedure continues until the
variables left in the regression model have met a pre-
determined quantitative inclusion value (alpha level).
The alpha level is a numerical limit put on the variables
significance at influencing the BIBI scores between
sites. The habitat data and BIBI scores calculated for
1995 and 1996 data were separated by elevation class
(>3,000 ft. and <3,000 ft.) and analyzed separately.
Initial graphs of the habitat variables and BIBI scores
provided a visual relationship in order to develop a list
of the most influential variables to be included in the
stepwise regression.

The low-elevation habitat variables chosen to be
included in the stepwise regression were percent can-
opy cover, in-stream substrate embeddedness, percent

sand, stream width, maximum water depth, in-stream
width-depth ratio, and average big trees and average

barren ground in the riparian zone. The high-elevation
habitat variables chosen were the percentages of sand,
gravel, cobble, and boulders in-stream at each site, in-
stream substrate embeddedness, percent canopy cover,
and average number of big trees in the riparian zone.

RESULTS AND DISCUSSION

Low-Elevation, Small Stream Sites

Metric Selection

Initially, a total of 13 low-elevation, small stream
sites were examined, 5 high LMI, 4 medium LM], and
4 low LMI. Two additional sites were set aside to test
the outcome of the BIBI (table 1). While the goal was
to sample these sites in both 1995 and 1996, four sites
were not sampled in 1996 due to low flow conditions.
In addition, a number of sites were excluded from the
BIBI analysis for both years because none of the three
replicate samples for a particular site had more than
100 invertebrate individuals. Low flow conditions in
1996 and replicate samples with fewer than 100 inver-
tebrate individuals resulted in the following breakdown
of sites used in the BIBI development: 6 sites in 1995
(1 high LMI, 1 medium LM], and 4 low LMI) and 5
sites in 1996 (1 high LMI, 1 medium LMI, and 3 low
LMI). The outcome of plotting the mean value of each
metric for each site against the three measures of LMI
for 1995 and 1996 are presented in Appendixes E and
E.

In 1995, 5 out of 15 metrics were identified as
meeting the criteria for best metrics outlined in the
methods section. These metrics included numbers of
total taxa, long-lived taxa, Trichoptera taxa, clinger
taxa, and sediment-intolerant taxa. Correlation coeffi-
cients were used to measure the degree and direction of
the linear relationship between each metric and LMI
category (table 5). A coefficient of 1 or -1 indicates a
perfect positive or negative relationship, respectively,
between a specific metric and LMI category. Negative
correlations were expected for the five selected metrics.
As noted in the methods section, a statistically non sig-
nificant correlation does not mean that a metric should
be discarded (Yoccoz, 1991). The five selected metrics
did successfully separate the high and low LMI sites

19



along a gradient of human influences (Appendix E),
and the correlations were generally negative. But a
number of correlation coefficients between some of the
metrics and the percent of stream miles within 100
meters of a road were positive. These results can be
explained by the one medium LMI site on Roaring
Creek (site number 10), which appears to be an outlier.
Although this site has a low percentage of stream miles
upstream within 100 meters of a road, many of the met-
ric values were lower than expected. For this site, the
medium LMI category may not be as effective at deter-
mining human influence as the other two categories.

A similar evaluation was carried out for the data
collected at low-elevation, small stream sites in 1996,
As noted previously, only 5 of the original 13 sampling
sites in 1996 were appropriate for inclusion. Three
metrics satisfied the metric selection criteria for the
1996 low elevation-small stream sites (Appendix F).
These metrics included total taxa, sediment-intolerant
taxa and total abundance (table 5). As expected, all of
the correlations were negative. Only two of the metrics
selected from the 1995 and 1996 data sets were the
same; the total number of taxa, and the number of sed-
iment-intolerant taxa. These metrics were the only two
used to develop the BIBI for low-elevation, small
stream sites.

Table 5. Selected metrics and Spearman rank correlation coefficients by land management influence for first through
third order sites less than 3,000 feet above sea level in the Cedar River Watershed

[Correlation coefficients of 1 and -1 indicate perfect positive and negative correlations, respectively.; LMI, land management

influence]
Percentage Percentage
Predicted of basin of steam
response to harvested Road density miles within
increase in last (miles per 100 meters
Metric in LMI 40 years square miles) of a road
1995
Total taxa Decrease -0.08 -0.48 -0.41
Ephemeroptera taxa Decrease -0.02 -0.47 -0.44
Trichoptera taxa Decrease 0.01 -0.41 -0.24
Clinger taxa Decrease -0.09 -0.53 -0.41
Sediment intolerant taxa Decrease 0.07 -0.35 -0.47
Total abundance Decrease -0.08 -0.53 1.0.62
1996
Total taxa Decrease -0.31 -0.49 -0.28
Sediment intolerant taxa Decrease -0.29 1.0.70 -0.57
Total abundance Decrease -0.40 -0.51 -0.19

LCorrelations significantly different from 0 at p = 0.05.

Metric Scoring Criteria

Because the selected metrics differed in scale, it
was necessary to transform them to a similar scale prior
to combining them into a BIBI site score. CDF plots
were created for the total taxa and sediment-intolerant
taxa metrics for 1995 and 1996 data to establish these
scores (figure 5). Once the scoring criteria were estab-
lished, a metric score was assigned to each of the repli-

20

cate samples containing more than 100 invertebrate
individuals collected at each site in 1995 and 1996
(tables 6 and 7). Scores for total taxa and sediment-
intolerant taxa were added to get a final BIBI score for
each replicate, and a mean BIBI score was calculated.
Mean BIBI scores ranged between 4, for the high LMI
site in 1996, and 8, for some of the low LMI sites in
both 1995 and 1996.
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Table 6. 1995 metric values, metric scores, and benthic index of biological integrity (BIBI) scores for first through
third order sampling sites less than 3,000 feet above sea level in the Cedar River Watershed

[Replicate values and scores for each site are separated by commas. For scoring criteria, see figure 5]

Metric values Metric scores
Land Total
management Map Sediment Sediment BIBI Mean
influence River site Total intolerant  Total intolerant scoresby  BIBI
category Site name mile number taxa taxa taxa taxa replicate score
High Greenpoint Creek 0.0 6 2,6,2 0,0,0 ,1,1 1,1,1 2,2,2 2
Lost Creek 0.4 8 27,9 2,1 5,1 3,3 8,4 6
McCellan Creek 0.0 9 4,6,7 00,0 ,1,1 1,1,1 2,2,2 2
Middle Fork, Taylor Creek 3.0 16 23,23,18 2,2,3 3,3,3 3,3,5 6, 6,8 6.7
Seattle Creek 1.8 15  9,24,26 1,2,1 ,3,5 3,3,3 4,6,8 6
Medium Goat Creek 0.1 5 19,8, 4 1,1,0 3,1,1 3,3,1 6,4,2 4
Roaring Creek 0.2 10 8,15,9 2,3, 1 1,3,1 3,5,3 4,8,4 53
Williams Creek 0.2 20 5 1 1 3 4 4
Williams Creek 1.0 21 24,5,4 1,0,1 3,1,1 3,1,3 6,2,4 4
Low Hotel Creek 0.2 7 24,31,33 2,2,3 3,5,5 3,3,5 6, 8,10 8
Rock Creek 0.0 11 39,14,16 2,1,2 5,3,3 3,3,3, 8,6,6 6.7
Rock Creek 3.7 12 28,37,13 2,2, 1 553 3,33 8,8,6 7.3
Rock Creek 4.6 13 32,31,18 2,4,1 5,53 3,53 8,10,6 8
Test Sites Webster Creek 2.1 18 33,21,30 3,3,3 5,35 5,55 10,8,10 9.3

Webster Creek 2.8 19 34,30, 27 3,4,3 555 5,55 10,10,10 10




Table 7. 1996 metric values, metric scores, and benthic index of biological integrity (BIBI) scores for first through
third order sampling sites less than 3,000 feet above sea level in the Cedar River Watershed.

[Replicate values and scores for each site are separated by commas. For scoring criteria, see figure 5]

Metric values

Metric scores

Land Total
management Map Sediment Sediment BIBI Mean
influence River site Total intolerant Total intolerant scoresby  BIBI
category "Site name mile number taxa  taxa taxa taxa replicate score
High Lost Creek 04 8 57,19 0,01 1,1,3 1,1,3 2,2,6 33
Middle Fork Taylor Creek 3.0 16 4,2,4 0,0,0 1,1,1 1,1,1 2,2,2 2
Seattle Creek 1.8 15 18,21,30 0,0,1 3,3,5 1,1,3 4,4,8 5.3
Moderate Goat Creek 0.1 5 6,84 0,00 1,1,1 1,1,1 2,2,2 2
Roaring Creek 0.2 10 14,16,10 0,2,1 3,3,1 1,3,3 4,6,4 4.7
Williams Creek 1.0 21 16,27,25 1,1,1 3,5,3 3,33 6,8,6 6.7
Low Hotel Creek 0.2 7 47,43,39 1,1,1 55,5 3,3,3 8,8,8
Rock Creek 0.0 11 34,32,29 1,1,1 55,5 3,33 88,8
Rock Creek 4.6 13 37,37,36 1,1,1 555 3,33 88,8
Test Sites Webster Creek 2.1 18 8,32 0,1 1,5 1,3 2,8 5
Webster Creek 2.8 19 17,31,21 3,53 1,5,3 4,10,6 6.7

0,4,1

Testing the Benthic Index of Biological Integrity
(BiBI) Across the Range of Land Management
Influences

One of the main objectives of this study was to
develop a BIBI that could discriminate between sites
that have different levels of LMI. To accomplish this,
the hypothesis that BIBI scores were different across a
full range of LMI in the Cedar River Watershed in 1995
and 1996 was tested. Data for each year were analyzed
separately to determine if observed patterns in BIBI
scores remained consistent between years. Patterns in
BIBI scores between years were expected to be similar,
given the fact that LMI’s remained constant.

In 1995, an ANOVA detected a significant differ-
ence in BIBI scores in response to one or more of LMI
categories (p = 0.05, table 8). To determine which LMI
categories were significantly different, post-hoc com-
parisons were done. These comparisons found that
sites classified as low LMI had significantly higher
BIBI scores than those sites classified as high or
medium LMI sites (figure 6). There was no significant

difference in BIBI scores between the medium and
high LMI sites, based on the post-hoc comparisons.

Mean BIBI scores for 1995 were plotted against
each of the three LMI criteria. In addition, two test
sites were also plotted in order to test the effectiveness
of the BIBI (figure 7). Sites characterized as belonging
to the low LMI category were generally clustered in the
upper left-hand side of each graph. Sites characterized
as a high LMI site were generally found in the lower
right-hand side of each graph. The test sites had high
BIBI scores, suggesting that they represent sites with
high biological integrity. The plot of BIBI scores
against road density did not show the desired outcome
of the test sites clustering around the low LMI sites.
So, road density may not be a good LMI category for
the test sites.

In 1996 data, a significant difference was found
in BIBI scores plotted with the LMI categories (p =
0.02, table 8). Post-hoc comparisons found a signifi-
cantly higher BIBI score for low LMI sites compared
with the high LMI site (figure 6). The medium LMI
site was not significantly different from either the low
LMI sites or the high LMI site. Plots of 1996 BIBI
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scores against the three LMI criteria resulted in low and
high LMI sites being clustered in the upper left-hand
and lower right-hand side of each graph, respectively
(figure 7). As was the case with the 1995 data, the plot
of BIBI scores for 1996 data against road density also
produced unusual results. Once again, the test sites
were not clustered with the other low LMI sites as
would be expected, given their high BIBI scores. Addi-
tional macroinvertebrate biomonitoring work that
includes a more robust data set would be helpful to
determine the usefulness of road density as a measure
of human influence in this watershed.

While the patterns were similar for 1995 and
1996 data in terms of LMI clustering, individual BIBI
scores for some sites changed between years. For
example, site numbers 11 and 18 had mean BIBI scores

of 8 and 7.3 in 1995 and 6 and 6 in 1996, respectively
(tables 6 and 7). Given the narrow range of possible
BIBI scores (2 to 10), any change in the BIBI score
could alter the assessment of the biological integrity of
these sites between years. As noted previously, there
were no known anthropogenic events that may have
caused these changes in BIBI scores. If the difference
in scores between years reflects natural variability, then
inappropriate metrics were selected. A second alterna-
tive could be errors introduced into the data sets during
the collection and identification of the invertebrates or
analysis of the data. Finally, a BIBI score generated
from two metrics does not give a wide enough range of
scores to adequately account for inevitable sources of
variability associated with a procedure that relies on the
collection of macroinvertebrates.

Table 8. Analysis of variance results for benthic invertebrate index of biological integrity (BIBI) scores for first
through third order sampling sites less than 3,000 feet above sea level

Percentage
of variance
Sum of Degrees of Mean explained by
Factors squares freedom squares F-ratio p-value each factor!
1995
Land management influence
(LMI) categories 75.4 2 377 14.1 0.000 40
Sampling sites within
LMI categories 64.9 10 6.5 2.4 0.038 20
Error 61.3 23 2.7 - -- 40
1996
Land management influence
(LMI) categories 96.3 2 48.1 25.0 0.000 51
Sampling sites within
LMI categories 51.5 6 8.6 4.5 0.006 26
Error 347 18 1.9 -- -- 23

IPercentage of variance explained by each factor was calculated based on methods presented in Sokal and Rohlf (1981).
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Table 9. Selected metrics and Spearman rank correlation coefficients by land management influence factors for 1996
first through third order sites above 3,000 feet above sea level

[Correlation coefficients of 1 and -1 indicate perfect positive and negative correlations, respectively. LMI, land management

influence]
Percentage Percentage

Predicted of basin of steam

response to harvested Road density miles within

increase in last (miles per 100 meters
Metric in LMI 40 years square miles) of a road
Total taxa Decrease -0.72 1.0.87 1-0.99
Ephemeroptera taxa Decrease -0.79 -0.59 -0.32
Trichoptera taxa Decrease -0.54 -0.77 -0.77
Clinger taxa Decrease -0.77 1.0.89 1.1.00
Sediment intolerant taxa Decrease 1.0.84 1.0.93 1.0.93
Total abundance Decrease -0.03 -0.26 -0.60
Plecoptera taxa Decrease -0.83 1.0.94 1.0.94
Intolerant taxa Decrease -0.77 1.0.89 1.0.89
Long lived taxa Decrease -0.77 -0.83 -0.66
Dominance of 3 taxa, percentage Increase 11.00 10.94 10.89
Scrapers, percentage Decrease -0.60 -0.31 -0.14
Predators, percentage Decrease -0.60 -0.66 -0.37

ICorrelations significantly different than 0 at p = 0.05.

Metric Scoring Criteria

For the eight selected metrics, a range of values
was established for the 1996 high-elevation, small
stream sites in order to put them into one of three met-
ric scoring categories (1, 3 or 5) using CDF plots of
mean metric values (figure 8). The specific range of
metric values assigned to each score is presented in
table 10. Once the scoring criteria were established, a
metric score was assigned to each of the replicate sam-
ples collected at each site in 1996 (table 11). As was
done with the low-elevation, small stream sites, the
scores for each metric were added to get a final BIBI
score for each replicate. The overall BIBI score for
high-elevation, small stream sites included the scores
for percent scrapers, percent predators, percent domi-
nance of three species, total number of taxa, percent
tolerant species, and number of Plecoptera taxa, intol-
erant taxa, and sediment-intolerant taxa. Mean BIBI
scores ranged between 14, for a high LMI site, and 32,
for a low LMI site.

Testing the Benthic Index of Biological Integrity
(BIBI) Across the Range of Land Management
Influences

As noted previously, there were too few sites to
adequately assess the biological integrity of sites sam-
pled in 1995. In addition, the two Pine Creek sites
specified to be evaluated in the monitoring plan had
fewer than 100 invertebrate individuals in all of the rep-
licate samples taken in 1996 which prevented them
from being included in the BIBI development and any
additional analyses. One hypothesis was tested for the
1996 high elevation-small streams which stated that
there was no difference in biological integrity between
the low and high L.MI sites using a t-test on the mean
BIBIscores. Asseen on figure 9, the low LMI sites had
a significantly higher BIBI score than the high LMI
sites (p<0.001).

As was the case with the low-elevation, small
stream sites, a plot of the 1996 scores did cluster high
and low LMI sites with timber harvest, as expected
(figure 10). However, plots of BIBI scores against road
density and percentage of stream miles within
100 meters of a road were not well defined.
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Figure 8. Continued

The Boulder Creek site (site number 46) has a low road
density and low percentage of stream miles within
100 meters of a road, but it has a low BIBI score, which
does not follow the expected trend. It is possible that a
measure of timber harvest may be a better indicator of
anthropogenic effects than these two LMI’s.

High-Elevation, Small Stream Sites
Compared With Low-Elevation, Small
Stream Sites

The two elevation groups, low elevation-small
stream (<3,000) and high elevation-small streams
(>3,000) reflect the two ecoregions present within the
Cedar River Watershed. Ecoregions exemplify homo-
geneity in characteristics such as climate, soils, geol-

OF PREDATORS

ogy, vegetation, and physiography (Omernik and
Gallant, 1986). Given a set of unique and homogenous
environmental factors, aquatic invertebrate communi-
ties within each ecoregion should also exhibit a unique
set of characteristics. Establishing reference sites and
identifying unique macroinvertebrate community char-
acteristics within each ecoregion helps to develop
effective BIBI’s. To determine if macroinvertebrate
communities in high- and low-elevation ecoregions
were significantly different, a statistical comparison of
total number of taxa and sediment-intolerant taxa from
high and low-elevation, small streams was done for
1996 data. The analysis was limited to data collected
at low LMI sites, to be able to generate a reference site
comparison.
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Table 10. Metrics and scoring criteria for the benthic index of biological integrity (BIBI) for first through third order
sampling sites greater than 3,000 feet above sea level in the Cedar River Watershed

[A low deviation from the predicted response to land management influence will get a score of 1, a medium deviation will get a
score of 3, and a high deviation will get a score of 5. LMI, land management influence; >, greater than; <, less than; --, no value
calculated]

Predicted
response to
increase
Metric in LMI | 2 3
Total taxa Decrease <11 11-14 >14
Ephemeroptera taxa Decrease <3 3-4 >4
Plecoptera taxa Decrease <2 2-4 >4
Trichoptera taxa Decrease <3 3-5 >5
Intolerant taxa Decrease <2 2-4 >4
Long lived taxa Decrease 0 -- >0
Sediment intolerant taxa Decrease 0 -- >0
Clinger taxa Decrease <7 7-10 >10
Dominance (3 taxa), percentage Increase >62 49-62 <49
Scrapers, percentage Decrease <13 13-38 >38
Predators, percentage Decrease <6 6-18 >18
60
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Figure 9. 1996 mean benthic index of biological integrity
(BIBI) scores for high and low land management influence
sites in the first through third order sites greater than
3,000 feet above sea level in the Cedar River Watershed.
Means with unique letters (x,y) are significantly different at
the p=0.05 level.
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Figure 10. Mean benthic index of biological integrity (BIBI) scores for first to third order sites greater than
3,000 feet above sea level in the Cedar River Watershed plotted against land management influence factors.

See table 1 for a list of sites corresponding to figure codes.

The total number of taxa found at low LMI sites
in 1996 was significantly higher at low-elevation than
at high-elevation sites (p = 0.004, figure 11). A reduc-
tion in number of taxa with elevation is to be expected
(Hynes, 1970). Also, the number of sediment-intoler-
ant taxa was significantly higher in the samples col-
lected from the high-elevation sites (p = 0.05,
figure 11). These results emphasize the need to keep
samples collected at different elevations and different
ecoregions separated and highlight the importance of
properly classifying sites before developing a BIBI
(Karr and Chu, 1997).

Low-Elevation, Large Stream Sites

A total of 24 low-elevation, large stream sites
were sampled in 1995 (8 high LMI and 8 medium LMI
sites and 8 test sites), and 20 sites were sampled in 1996
(6 high LMI, 7 medium LMI sites, and 7 test sites).
The reduction in sites from 1995 to 1996 was due to
extreme low-flow conditions in 1996. As was the case
with small streams, replicate samples with fewer than
100 individuals were excluded. This resulted in 12
sites (6 high LMI, 6 medium LMI) for 1995 and 10
sites (7 medium LMI, 3 high LMI) for 1996 BIBI
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development. Under ideal circumstances, a BIBI
should be developed with sites ranging from low LMI
to high LMI. A wide range of sites makes it easier to
identify which metrics respond to land management
influences as well as help to establish metric scoring
criteria. The lack of low LMI sites in the low-eleva-
tion, large streams limited the range of sites typically
needed to successfully develop a BIBI. In addition,
none of the metric graphics examined in both 1995 and
1996 successfully separated the medium and high LMI
sites (Appendixes E and F). Therefore, a BIBI score
for low-elevation, large streams was not calculated.
Macroinvertebrate communities are often more diffi-
cult to characterize in larger streams (Allan, 1995),
partially due to a greater heterogeneity in habitat con-
ditions (Downes and others, 1993) as well as to sam-
pling difficulties. Quite often, samples from larger
streams are collected in safe or convenient locations
rather than scientifically appropriate locations. These
factors can result in inaccurate taxon estimates or
increased variability. There may be other influences on
the biological integrity of the benthic communities in
large streams of the Cedar River Watershed than those
examined in this study that include both anthropogenic
and natural factors.
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Pool Samples Compared With Riffle
Samples

Invertebrate communities found in riffles and
pools are typically different. To fully characterize a
stream, samples from both pools and riffles should be
collected. However, time and funding often prevent
such an extensive collection effort. Given that most of
the BIBI studies in the Northwest have been performed
on riffle samples, it was decided to use riffle samples
for this study. The possibility that macroinvertebrate
samples collected in pools might yield different results
was evaluated by collecting pool and riffle samples
from five sites in 1995. Metric values calculated for

pools and riffles were statistically compared using a
Wilcoxon’s signed-ranks test (Sokal and Rohlf, 1981).
The sampling sites and metric values used in the anal-
ysis are in table 12. Generally, metric values for riffle
samples were higher than those for pool samples. Of
the 15 metrics examined, 6 metric values were found to
be significantly higher in the riffle samples: total abun-
dance, percent tolerant taxa, total taxa, Ephemeroptera
taxa, Trichoptera taxa, and clinger taxa (figure 12).
These results do not conclusively suggest that pool
samples would not be valuable for the development of
a BIBI or for further use in monitoring. However, riffle
samples did have a significantly higher number of taxa
than the pool samples, as well as other metric values.
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Cedar River Watershed. In all cases, riffle metric values were significantly higher than pool samples, at p=0.05.

Habitat Data Analysis and Results

To determine the relationship between some of
the habitat variables and the BIBI scores at the high and
low-elevation, small stream sites, a preliminary analy-
sis was performed using stepwise regression proce-
dures (Kachigan, 1986) on 1996 data and 1995 and
1996 data combined for the high- and low-elevation
sites, respectively. One habitat variable, percent
embeddedness (the degree to which rocks are embed-
ded in fine material), at the high-elevation sites was sig-
nificantly correlated with BIBI scores (r2=0.71, p =
0.04). As the percent embeddedness increased, the
BIBI scores decreased. For the low-elevation sites, the
percentage of sand at a site was found to be related to
the BIBI scores (r2 = 0.52, p=0.003). The percentage
of sand at a site was also negatively correlated with
BIBI scores. The habitat variables that were correlated
to the BIBI scores for both high and low elevation sites
were substrate related.

SUMMARY AND CONCLUSIONS

As part of the City of Seattle’s Cedar River
Aquatic System Monitoring Plan, a benthic index of
biological integrity (BIBI) analysis was performed for
the upper Cedar River watershed. The use of biological
indices or multimetrics for the assessment of aquatic
system has increased over the last ten years (Gerritsen,
1995). Additive metrics such as the BIBI have the
unique ability to simplify multiple measure of biologi-
cal information into a single measure of biological
integrity. It has been suggested that such a measure
may improve the ability of managers to make informed
decisions regarding aquatic system management (Fore
and others, 1996; Gerritsen, 1995).

A BIBI was created for low-elevation, small
streams using only two metrics, total taxa and sediment
intolerant taxa, that were found to be effective at differ-
entiating sites with different land management influ-
ence. Such a limited number of metrics used to create
the BIBI limits its ability to be used on other similar
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sized streams within the watershed. Fore and others
(1996) suggest that multiple metrics are critical to a
useful BIBI because they increase the probability of
successfully identifying the biological integrity of a
site. The limited number of metrics identified for the
low-elevation, small stream sites could be due to the
high variability in metric values between replicate sam-
ples, the high variability in metric values between years
and the limited number of sites, as well as individual
invertebrates found at each site. A great deal of care
should be taken if this BIBI were used to evaluate sim-
ilar streams, given its limited number of metrics. The
small range of possible BIBI scores increases the like-
lihood that a new site being evaluated using this BIBI
might be misclassified, depending on the year sampled.
There was also variability in the BIBI scores between
years for some of the low-elevation, small stream sites.
An effective BIBI should not be sensitive to natural
annual variability (Fore and others, 1996). But a com-
plete separation of natural and human effects in a BIBI
is unrealistic because human disturbance exacerbates
naturally occurring disturbance (Schlosser, 1990).
BIBI scores may represent natural as well as human
disturbance. To be able to use this two-metric BIBI to
evaluate another low-elevation, small stream site
within the Cedar River watershed, it would be helpful
to collect invertebrates from additional high and low
LMI sites to be able to accurately evaluate the test
score.

A BIBI was created for high elevation-small
streams sampled in 1996, using metrics that were found
effective at differentiating between LMI’s. The eight-
metric BIBI for high elevation-small streams was
found to be statistically significant. Like the low-ele-
vation, small stream BIBI, a great deal of care must be
taken if this BIBI were to be used to evaluate other
streams in the watershed. The high-elevation BIBI was
generated with only 4 sites, and there was a high degree
of variability within replicate samples and between
years. In many cases, samples had so few invertebrate
individuals they had to be deleted from the analysis.
Future monitoring efforts in this watershed would ben-
efit from increasing the area sampled for each replicate
so that more individuals are collected.

The number of total taxa and sediment-intolerant
taxa were found to be statistically different between the
high elevation and the low elevation-small stream sites.
The difference between the high- and low-elevation,
small stream BIBI's emphasizes the fact that distinct
macroinvertebrate populations occur in the different
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ecoregions in the Cedar River Watershed and the need
to carefully select and characterize sites.

The mean metric values that were calculated for
riffle sampling sites were significantly higher than the
metrics calculated for pool sampling sites. Riffle sam-
ples also had a significantly higher number of taxa and
other metrics, compared with pool samples. The
higher metric values and greater number of taxa
improves the resolution of a BIBI and therefore makes
it more effective. By focusing the sampling effort on
the riffle samples in the Cedar River Watershed, a more
robust BIBI was calculated.

The results of the initial BIBI analysis for the
upper Cedar River Watershed were mixed. While it
was possible to identify a series of metrics capable of
differentiating sites over a range of land management
influences in smaller streams, it was not possible to do
so for larger streams and rivers. It is unclear why the
metrics examined were unable to detect any site differ-
ences for the larger rivers. It is possible that three rep-
licate samples per site were inadequate to capture the
range of variability found at larger river sites. Larger
rivers tend to have a greater degree of habitat heteroge-
neity (Downes and others, 1993; Allan, 1995). This
heterogeneity within reaches can create patches with
unique community composition. In order to measure
the entire community, additional sample locations or
replicates may be needed, or a more selective sampling
site selection protocol could be implemented. Another
reason that the metrics examined could not differenti-
ate between larger stream sites could be the fact that the
macroinvertebrates at these sites are unaffected by the
land management influences examined in this study. It
is possible that naturally occurring physical processes
could be influencing invertebrate communities at these
sites to a greater degree than land management influ-
ences. Additional studies designed to examine the
relationship between macroinvertebrate communities
and physical measures may help address the natural
influences on community dynamics of the larger river
sites.

Habitat data was collected along with samples of
macroinvertebrates, but the data were not incorporated
into the development of the BIBI. Habitat data col-
lected at the BIBI sites can be found in Appendixes G
through K. Some of these variables were used in a pre-
liminary assessment of the relationship between the
habitat variables and the BIBI scores for low- and high-
elevation, small streams for 1995 and 1996 data com-
bined. The habitat variables found to be the best predic-



tors of the BIBI scores were percent sand for the low-
elevation, small stream sites and percent embedded-
ness for the higher elevation-small stream sites. Both
variables are related to the quality of the substrate uti-
lized by benthic invertebrates. To better determine if
substrate is the most influential factor in the health of
the benthic communities in the Cedar River Watershed,
a more extensive quantitative habitat analysis may be
necessary.

The BIBI is only one tool in assessing macroin-
vertebrate communities and how they are influenced by
land management practices. Other macroinvertebrate
community assessment tools that may be useful to
water management agencies would be (1) a multivari-
ate assessment that would include all habitat, water
quality, and LMI data, to determine the driving forces
on community composition; (2) a predictive model for
determining macroinvertebrate communities for differ-
ent site types, such as the use of the River Invertebrate
Prediction and Classification System (Wright, 1995),
or (3) using indicator species to predict possible
anthropogenic effects.

Other aspects of the monitoring plan including
the hydrology module (Seattle Public Utilities, 1998)
will help explain differences in the benthic communi-
ties between sites and between years. The BIBI devel-
oped from the data collected in 1995 and 1996 should
not be used alone to assess land management influ-
ences on macroinvertebrate communities, but it can be
used in addition to other monitoring in the Cedar River
Watershed.
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Appendix A. Partial site list of 1995 invertebrate abundance data for the Cedar River Watershed aquatic system
monitoring plan

[Data for all sites can be found on the U.S. Geological Survey home page at http://wa.water.usgs.gov/; RS, riffle sample; >, greater than;
<, less than; sp, species] '

Stream

Bear Bear Bear Boulder Boulder  Boulder

Creek Creek Creek Creek Creek Creek
Figure code 1 1 1 2 2 3
River mile 1.6 1.6 1.6 0.5 0.5 1.1
Replicate number RS1 RS2 RS3 RS1 RS2 RS3
Date 10-27-95 10-27-95 10-27-95 10-26-95 10-26-95 10-26-95
Elevation >3,000 >3,000 >3,000 <3,000 <3,000 <3,000
Stream order 1-3 1-3 1-3 4-6 4-6 4-6

Bear Bear Bear Boulder Boulder Boulder

Order Family Taxon Creek Creek Creek Creek Creek Creek
Coleoptera Coleoptera 0 0 0 0 0 0
Coleoptera  Curculionidae Curculionidae 0 0 0 0 0 0
Coleoptera  Dytiscidae Oreodytes sp. 0 0 0 0 0 0
Coleoptera  Elmidae Cleptelmis sp. 0 0 0 0 0 0
Coleoptera  Elmidae Elmidae 0 0 0 0 0 0
Coleoptera  Elmidae Heterlimnius sp. 0 0 0 0 1 0
Coleoptera  Elmidae Lara sp. 0 0 0 0 0 0
Coleoptera  Elmidae Narpus sp. 0 0 0 0 0 0
Coleoptera  Elmidae Optioservus sp. 0 0 0 0 0 0
Coleoptera  Elmidae Zaitzevia sp. 0 0 0 0 0 0
Coleoptera  Hydraenidae Hydraena sp. 0 0 0 0 0 0
Coleoptera  Psephenidae Acneus sp. 0 0 0 0 0 0
Diptera Athericidae Atherix sp. 0 0 0 0 0 0
Diptera Blephariceridae  Blephariceridae 0 0 0 0 0 0




Appendix B. Partial site list of 1996 invertebrate abundance data for the Cedar River Watershed aquatic system
monitoring plan

[Data for all sites can be found on the U.S. Geological Survey home page at http://wa.water.usgs.gov/; RS, riffle sample; >, greater than;
<, less than; sp, species]

Stream

Bear Bear Bear Boulder Boulder

Creek Creek Creek Creek Creek
Figure code 1 1 1 3 3
Site id BEAL.6 BEAL.6 BEAL.6 BOUI.1 BOUI.1
Replicate number RS 1 RS2 RS3 RS 1 RS2
Date 09-11-96 09-11-96  09-11-96  09-28-96 09-28-96
Elevation >3,000 >3,000 >3,000 <3,000 <3,000
Stream order 1-3 -3 -3 4-6 4-6

Bear Bear Bear Boulder Boulder

Order Family Taxon Creek Creek Creek Creek Creek
Bivalva Sphaeriidae Sphaeriidae 0 0 0 0 0
Coleoptera  Dytiscidae Dytiscidae 0 0 0 0 0
Coleoptera  Dytiscidae Hydrovatus sp. 0 0 0 0 0
Coleoptera Dytiscidae Oreodytes sp. 0 0 0 0 0
Coleoptera  Elmidae Elmidae 0 0 0 0 0
Coleoptera  Elmidae Heterlimnius sp. 0 0 0 0 2
Coleoptera  Elmidae Lara sp. 0 0 0 0 0
Coleoptera Elmidae Narpus sp. 0 0 0 0 0
Coleoptera  Elmidae Optioservus sp. 0 0 0 0 0
Coleoptera  Elmidae Zaitzevia sp. 0 0 0 0 0
Coleoptera  Psephenidae Acneus sp. 0 0 0 0 0
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Appendix E. 1995 metric values for sites less than 3,000 feet above sea level, stream order 1 to 3, and sites less than 3,000
feet above sea level, stream order 4 to 6 by land management influence


































Appendix F. 1996 metric values for sites less than 3,000 feet above sea level, stream order 1 to 3, sites less than
3,000 feet above sea level, stream order 4 to 6, and sites greater than 3,000 feet above sea level,
stream order 1 to 3 by land management influence
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Appendix H. Qualitative Habitat Assessment for Benthic Index of Biological Integrity (BIBI) Sites in the Cedar River

Substrate:

Instream cover:

Embeddedness:

Velocity / depth:

Channel shape:
Pool / riffle ratio:

Bank vegetation:

Lower bank stability:

Disruptive pressure:

Zone of influence:

Success and stage:

Watershed

EXPLANATION
Poor, greater than 50 percent; Marginal, 20-50 percent; Sub-optimal, 10-20 percent;
Optimal, less than 10 percent.

Poor, less than 25 percent; Marginal, 25-50 percent; Sub-optimal, 50-75 percent; Optimal,
greater than 75 percent.

Poor, greater than 75 percent; Marginal, 50-75 percent; Sub-optimal, 25-50 percent; Optimal,
0-25 percent.

Poor, 1 of 4 habitats; Marginal, 2 of 4 habitats; Sub-optimal, 3 of 4 habitats; Optimal, all
habitats.

Poor, inverse trapezoidal; Sub-optimal, rectangular; Optimal, trapezoidal.
Poor, greater than 25; Marginal, 16-25; Sub-optimal, 8—15; Optimal, less than 7.

Poor, less than 50 percent; Marginal, 50-60 percent; Sub-optimal, 70-89 percent;
Optimal, greater than 90 percent.

Poor, unstable; Marginal, moderate erosion; Sub-optimal, little erosion; Optimal, stable.

Poor, high, less than 30 percent; Marginal, obvious, 30-60 percent; Sub-optimal, evident,
60-90 percent; Optimal, minimal.

Bank full width: Poor, little or none; Marginal, greater than 1 meter and less than 2 meters;
Sub-optimal, greater than 2 meters and less than 4 meters; Optimal, greater than 4 meters

Poor, seedlings / clearcut; Marginal, pole sampling; Sub-optimal, young; Optimal, old growth.




Appendix H. Qualitative habitat assessment for benthic index of biological integrity sites in the Cedar River Watershed.

[Percent fines is substrate that consists of 6.35millimeter size or smaller. All other measures were made visually by field personnel and not measured.

Disruptive pressures is a general visual estimate of evidence of vegetation disruption on stream banks; <, less than; >, more than; %, percent]

Substrate
River Map site (percentage
Stream name mile  number Latitude Longitude Date of fines) Instream cover
1995
Bear Creek 1.6 1 47-19-30  121-36-33  10-27-95 Optimal Optimal
Boulder Cree 0.5 2 47-21-58 121-41-35  10-26-95 Optimal No data
1.1 3 47-21-37  121-42-11  10-26-95 Marginal No data
3.2 4 47-20-09 121-42-14 10-13-95 Poor Marginal
Cedar River 0.0 36 47-22-12  121-37-23  10-06-95 Optimal Optimal
1.0 22 47-23-06 121-57-18  10-17-95 Optimal Poor
5.0 37 47-20-45 121-33-00  10-06-95 Optimal Optimal
6.9 38 47-19-14  121-31-44  10-27-95 Optimal Poor
8.8 25 47-24-07 121-50-10  10-21-95 Optimal Poor
11.5 26 47-25-02  121-47-15  10-19-95 Optimal Marginal
Goat Creek 0.1 5 47-19-11 121-31-48  10-27-95 Optimal Optimal
Lost Creek 0.4 8 47-24-26  121-45-21  10-31-95 Optimal Optimal
McClelian Creek 0.0 9 47-22-57 121-39-40  10-23-95 Sub-optimal Sub-optimal
North Fork Cedar River 0.7 29 47-19-01 121-30-25  10-05-95 Optimal Sub-optimal
24 30 47-19-15  121-28-52  10-04-95 Optimal Sub-optimal
Pine Creek 0.8 41 47-19-32  121-36-40  10-26-95 Optimal Optimal
Rack Creek 0.0 31 47-23-30  121-43-16  10-12-95 Optimal Sub-optimal
Rex River 0.8 42 47-21-36  121-40-44  10-25-95 Optimal Poor
22 43 47-21-04 121-39-32  10-25-95 Optimal Poor
42 44 47-20-05 121-37-52  10-26-95 Optimal Poor
57 45 47-18-56  121-37-44  10-25-95 Optimal Poor
Roaring Creek 0.2 10 47-21-42  121-35-24  10-31-95 Poor Poor
Seattle Creek 1.8 15 47-19-13  121-33-25  10-27-95 Optimal Poor
South Fork Cedar River 3.0 48 47-19-32  121-36-40  10-03-95 Sub-optimal Sub-optimal
Spring Creek 0.6 40 47-18-55 121-28-20  10-04-95 Optimal No data
Tinkham Creek 0.3 39 47-19-40  121-28-04  10-02-95 Optimal Sub-optimal
1996
Bear Creek 1.6 1 47-19-30  121-36-33  09-11-96 Optimal Sub-optimal
Boulder Creek 3.1 46 47-20-10 121-41-56  09-04-96 Sub-optimal Optimal
32 4 47-20-09 121-42-14  09-04-96 Sub-optimal Sub-Optimal
Cedar River 1.0 22 47-23-06 121-57-18  09-05-96 Optimal Poor
52 23 47-23-04 121-53-49  09-05-96 Sub-optimal Sub-optimal
6.9 24 47-23-13  121-51-59  09-05-96 Optimal Optimal
11.5 26 47-25-02  121-47-15  08-21-96 Optimal Optimal
12.1 27 No data Nodata 08-21-96 Optimal Sub-optimal
Goat Creek 0.1 5 47-19-11 121-31-49  09-10-96 Optimal Poor
Lost Creek 0.4 8 47-24-26  121-45-21  09-18-96 Optimal Sub-optimal
North Fork Cedar River 2.4 30 47-19-15  121-28-52  08-28-96 Poor Sub-optimal
North Fork Taylor Creek 1.3 17 47-22-24  121-47-60  09-06-96 Sub-optimal Marginal
Pine Creek 0.7 47 47-19-32  121-36-40 10-17-96 Sub-optimal Marginal
0.8 41 47-19-30 121-36-32  10-22-96 Optimal Marginal
Rex River 22 43 47-21-04  121-39-32  09-19-96 Sub-optimal Optimal
42 44 47-20-05 121-37-52  09-19-96 Sub-optimal Optimal
Roaring Creek 0.2 10 47-21-42  121-35-24  (09-10-96 Poor Sub-optimal
Rock Creek 4.6 13 47-24-36  121-53-55  09-06-96 Marginal Sub-optimal
Seattle Creek 1.8 15 47-19-13  121-33-25  09-10-96 Sub-optimal Sub-optimal
South Fork Cedar River 3.0 48 47-19-32  121-36-40  09-10-96 Optimal Poor
Spring Creck 0.6 40 47-18-55 121-28-20 09-12-96 Sub-optimal Optimal
Taylor Creek 25 35 47-22-09 121-49-35  08-30-96 Sub-optimal Marginal
Tinkham Creek 0.3 39 47-19-01 121-30-68  09-17-96 Optimal Sub-optimal
Webster Creek 2.8 19 47-26-25 121-54-07  09-16-96 Poor Sub-optimal
Williams Creek 1.0 21 47-23-43  121-51-09  09-24-96 Sub-optimal Sub-optimal
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Appendix H. Qualitative habitat assessment for benthic index of biological integrity sites in the Cedar River
‘Watershed.—Continued

Stream name Embeddedness Velocity / depth Channel shape
1995
Bear Creek Optimal Optimal Optimal
Boulder Creek Sub-optimal Marginal Optimal
Optimal Marginal Sub-optimal
Poor Marginal Optimal
Cedar River Optimal Optimal Optimal
Optimal Optimal Sub-optimal
Optimal Sub-optimal Optimal
Optimal Optimal Sub-optimal
Optimal Optimal Optimal
Optimal Sub-optimal Sub-optimal
Goat Creek Optimal Marginal Sub-optimal
Lost Creek Optimal Optimal Optimal
McClellan Creek Marginal Marginal Sub-optimal
North Fork Cedar River Marginal Marginal Sub-optimal
Sub-optimal Marginal Optimal
Pine Creek Optimal Sub-optimal Optimal
Rack Creek Marginal Marginal Sub-optimal
Rex River Optimal Poor Optimal
Optimal Marginal Sub-optimal
Poor Poor Sub-optimal
Poor Poor Sub-optimal
Roaring Creek Marginal Poor Optimal
Seattle Creek Sub-optimal Optimal Sub-optimal
South Fork Cedar River Sub-optimal Marginal Sub-optimal
Spring Creek Optimal Optimal No data
Tinkham Creek Optimal Sub-optimal Optimal
1996
Bear Creek Optimal Optimal Sub-optimal
Boulder Creek Sub-optimal Sub-optimal Sub-optimal
Marginal Marginal Sub-Ooptimal
Cedar River Optimal Sub-optimal Optimal
No data Optimal Optimal
Optimal Optimal Optimal
Sub-optimal Optimal Optimal
Optimal Marginal Sub-optimal
Goat Creek Poor Poor Sub-optimal
Lost Creek Optimal Marginal Optimal
North Fork Cedar River Poor Optimal Optimal
North Fork Taylor Creek Optimal Marginal Optimal
Pine Creek Optimal Marginal Optimal
Rex River Sub-optimal Optimal Sub-optimal
Marginal Sub-optimal Poor
Roaring Creek Sub-optimal Sub-optimal No data
Rock Creek Sub-optimal Marginal Sub-optimal
Seattle Creek Marginal Marginal Sub-optimal
South Fork Cedar River Optimal Marginal Sub-optimal
Spring Creek Optimal Optimal Optimal
Taylor Creek Optimal Marginal Optimal
Tinkham Creek Optimal Sub-optimal Optimal
Webster Creek Marginal Marginal Poor
Williams Creek Sub-optimal Marginal Sub-optimal
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Appendix H. Qualitative habitat assessment for benthic index of biological integrity sites in the Cedar River

Watershed.—Continued

Width
Pool / riffle to depth Bank
Stream name ratio ratio vegetation Lower bank stability
1995
Bear Creek Optimal Optimal Optimal Optimal
Boulder Creek Optimal Optimal Sub-optimal Marginal
Marginal * Sub-optimal Marginal Poor
Poor No data Sub-optimal Poor
Cedar River Optimal Marginal Optimal Sub-optimal
Poor Sub-optimal Optimal Optimal
Optimal No data Marginal Marginal
Poor Optimal Optimal Optimal
Optimal Poor Optimal Optimal
Optimal Marginal Sub-optimal Sub-optimal
Goat Creek Poor Optimal Sub-optimal Optimal
Lost Creek Poor Marginal Optimal Optimal
McClellan Creek Marginal Sub-optimal Marginal Poor)
North Fork Cedar River Sub-optimal Marginal Optimal Marginal
Marginal Marginal Optimal Optimal
Pine Creek Marginal Optimal Optimal Sub-optimal
Rack Creek Optimal Sub-optimal Marginal Poor
Rex River Optimal Optimal Poor Optimal
Optimal Poor Optimal Optimal
Optimal Sub-optimal Sub-optimal Sub-optimal
Optimal Marginal Sub-optimal Sub-optimal
Roaring Creek Poor Sub-optimal Poor Poor
Seattle Creek Marginal Sub-optimal Marginal Marginal
South Fork Cedar River Marginal Marginal Sub-optimal Marginal
Spring Creek Marginal Optimal Optimal Optimal
Tinkham Creek Optimal Poor Optimal Marginal
1996
Bear Creek Optimal Optimal Optimal Sub-optimal
Boulder Creek Marginal Sub-optimal Sub-optimal Optimal
Sub-optimal Marginal Sub-optimal Sub-optimal
Cedar River Marginal Marginal Optimal Sub-optimal
Sub-optimal Sub-optimal Optimal Optimal
Sub-optimal Sub-optimal Optimal Optimal
Optimal Optimal Optimal Optimal
Poor Optimal Sub-optimal Marginal
Goat Creek Poor Poor Poor Optimal
Lost Creek Optimal Optimal Optimal Marginal
North Fork Cedar River Marginal Optimal Optimal Optimal
North Fork Taylor Creek Sub-optimal Marginal Optimal Sub-optimal
Pine Creek Optimal Optimal Marginal( Marginal
Optimal Optimal Poor Marginal
Rex River Poor Poor Optimal Optimal
Sub-optimal Marginal Sub-optimal Optimal
Roaring Creek Poor Sub-optimal Poor Marginal
Rock Creek Marginal Sub-optimal Optimal Marginal
Seattle Creek Poor Poor Marginal Marginal
South Fork Cedar River Poor Poor Marginal Marginal
Spring Creek Optimal Optimal Sub-optimal Marginal
Taylor Creek Sub-optimal Sub-optimal Optimal Marginal
Tinkham Creek Optimal Optimal Optimal Optimal
Webster Creek Poor Sub-optimal Marginal Marginal
Williams Creek Marginal Marginal Marginal Marginal
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Appendix H. Qualitative habitat assessment for benthic index of biological integrity sites in the Cedar River

Watershed.—Continued

Stream name

Disruptive pressure

Zone of influence

Successional stage

Bear Creek
Boulder Creek

Cedar River

Goat Creek
Lost Creek
McClellan Creek

North Fork Cedar River

Pine Creek
Rack Creek

Rex River

Roaring Creek

Seattle Creek

South Fork Cedar River
Spring Creek

Tinkham Creek

Bear Creek
Boulder Creek

Cedar River

Goat Creek

Lost Creek

North Fork Cedar River
North Fork Taylor Creek

Pine Creek
Rex River

Roaring Creek

Rock Creek

Seattle Creek

South Fork Cedar River
Spring Creek

Taylor Creek

Tinkham Creek
Webster Creek
Williams Creek

Optimal
Marginal
Poor

Poor
Sub-optimal
Optimal
Poor
Optimal
Optimal
Optimal
Optimal
Optimal
Marginal
Sub-optimal
Optimal

*Sub-optimal

Marginal
Optimal
Optimal
Sub-optimal
Sub-optimal
Poor
Sub-optimal
Sub-optimal
Optimal
Marginal

Optimal
Sub-optimal
Sub-optimal
Optimal
Optimal
Optimal
Optimal
Marginal
Marginal
Marginal
Optimal
Marginal
Marginal
Poor
Optimal
Optimal
Poor
Sub-optimal
Marginal
Marginal
Optimal
Sub-optimal
Poor
Marginal
Marginal

1995

1996

Poor
Sub-optimal
Optimal
Sub-optimal
Sub-optimal
Poor
Sub-optimal
Poor
Optimal
Optimal
Optimal
Poor
Optimal
Optimal
Marginal
Optimal
Sub-optimal
Optimal
Poor
Sub-optimal
Optimal
Poor
Optimal
Sub-optimal
Optimal
Optimal

Sub-Optimal
Marginal
Poor
Optimal
Marginal
Sub-optimal
Optimal
Optimal
Optimal
Poor
Sub-optimal
Sub-optimal
Sub-optimal
Optimal
Sub-optimal
Sub-optimal
Optimal
Optimal
Sub-optimal
Poor
Optimal
Sub-optimal
Poor
Marginal
Sub-optimal

Optimal
Sub-optimal
Sub-optimal
Marginal
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Marginal
Sub-optimal
Sub-optimal
Optimal
Optimal
Sub-optimal
Poor
Marginal
Sub-optimal
Sub-optimal
Optimal
Poor
Marginal
Optimal
Optimal

Optimal
Marginal
Poor
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Marginal
Sub-optimal
Sub-optimal
Poor

Poor
Sub-optimal
Sub-optimal
Sub-optimal
Sub-optimal
Marginal
Poor
Optimal
Sub-optimal
Marginal
Poor
Sub-optimal
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Appendix J. Riparian Vegetation at Benthic Index of Biological Integrity (BIBI) Sites in the Cedar River Watershed

EXPLANATION

Canopy-big and small trees:  1-sparse, 0-10 percent; -moderate, 10-40 percent; 3-heavy, 40-75 percent;
4-very heavy, greater than 75 percent.

Understory-woody shrubs: 1-sparse, 0-10 percent; 2-moderate, 10-40 percent; 3-heavy, 40-75 percent;
4-very heavy, greater than 75 percent.

Ground cover-woody shrubs: 1-sparse, 010 percent; 2-moderate, 10-40 percent; 3-heavy, 40-75 percent;
4-very heavy, greater than 75 percent.

Ground cover—barren: 1-sparse, 0-10 percent; 2-moderate, 10-40 percent; 3-heavy, 40-75 percent.
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